文献类型: 外文期刊
作者: Zeng, Yang 1 ; Lin, Yuhan 1 ; Ma, Ming 1 ; Chen, Hong 1 ;
作者机构: 1.Southwest Univ, Coll Resources & Environm, Chongqing 400715, Peoples R China
2.Chongqing Engn Res Ctr Agr Nonpoint Source Pollut, Chongqing 400715, Peoples R China
3.Chongqing Key Lab Agr Resources & Environm, Chongqing 400715, Peoples R China
关键词: phosphorus-rich biochar; precursor; carbonization process; adsorption mechanism
期刊名称:MINERALS ( 影响因子:2.2; 五年影响因子:2.5 )
ISSN:
年卷期: 2024 年 14 卷 1 期
页码:
收录情况: SCI
摘要: In recent years, the utilization of phosphorus-enriched biochar (PBC) has attracted significant attention due to its exceptional stability and surface reactivity. This review systematically summarizes the advancements in research related to the application of PBC as an adsorbent for remediating water contaminated with heavy metals. Initially, the precursors utilized in the production of PBC, encompassing biomass and phosphorus sources, are introduced. Subsequently, the distinct physicochemical properties and adsorption characteristics resulting from phosphorus doping on the biochar surface through various carbonization processes and parameters are elucidated. Additionally, the diverse adsorption mechanisms employed by PBC in removing heavy metals from water are analyzed. Lastly, future research prospects and associated challenges concerning PBC are presented. This paper aims to furnish comprehensive background information for the practical implementation of PBC in the purification of heavy metal-contaminated water environments.
- 相关文献
作者其他论文 更多>>
-
Selenium- and chitosan-modified biochars reduce methylmercury contents in rice seeds with recruiting Bacillus to inhibit methylmercury production
作者:Guo, Pan;Ma, Ming;Rennenberg, Heinz;Du, Hongxia;Xiong, Bingcai;Ma, Ming;Zhao, Wancang;Wang, Mingxing;Wang, Dingyong;He, Mingyan;Flemetakis, Emmanouil;Haensch, Robert
关键词:Biochar; Methylmercury; Paddy soil; Microbes; Network
-
Adsorption effect and mechanism of Cd(II) by different phosphorus-enriched biochars
作者:Zeng, Yang;Lin, Yuhan;Ma, Ming;Chen, Hong;Ma, Ming;Chen, Hong;Ma, Ming;Chen, Hong
关键词:Phosphorous-enriched biochar; Agricultural and forestry waste; Low-grade phosphate rock and derivatives; Cadmium; Adsorption mechanism; Mineral precipitation
-
The duality of sulfate-reducing bacteria: Reducing methylmercury production in rhizosphere but enhancing accumulation in rice plants
作者:Guo, Pan;Mao, Qiaozhi;Deng, Yuhan;Wang, Xun;Fan, Xu;Ma, Ming;Du, Hongxia;Xiong, Bingcai;Deng, Yuhan;Wang, Dingyong;Ma, Ming;Li, Jing;Agathokleous, Evgenios
关键词:Rice; Methylmercury; Amino acid; Sulfate-reducing bacteria; Transcription factors
-
Bacterial assemblages imply methylmercury production at the rice-soil system
作者:Guo, Pan;Rennenberg, Heinz;Wang, Tao;Gao, Lan;Ma, Ming;Du, Hongxia;Ma, Ming;Flemetakis, Emmanouil;Hansch, Robert;Wang, Dingyong
关键词:Mercury gradient; Methylation; Plant development; Rice; Microbial interaction
-
Seasonal changes in total mercury and methylmercury in subtropical decomposing litter correspond to the abundances of nitrogen-fixing and methylmercury-degrading bacteria
作者:Yang, Liping;Yang, Guang;Guo, Pan;Wang, Tao;Ma, Ming;Wang, Jueying;Xiong, Bingcai;Du, Hongxia;Ma, Ming;Wang, Dingyong;Du, Hongxia
关键词:Litterfall decomposition; Methylmercury; Nitrogen-fixing microbes; MeHg-degrading microbes; Subtropical forest
-
Biogeochemical transformation of mercury driven by microbes involved in anaerobic digestion of municipal wastewater
作者:Gao, Yuanqin;Cheng, Hao;Xiong, Bingcai;Du, Hongxia;Liu, Lei;Imanaka, Tadayuki;Igarashi, Yasuo;Ma, Ming;Luo, Feng;Ma, Ming;Wang, Dinyong;Du, Hongxia;Ma, Ming
关键词:Anaerobic digestion; Municipal wastewater; Mercury; Biogeochemical transformation; Methylation; demethylation
-
Differentially-expressed genes related to glutathione metabolism and heavy metal transport reveals an adaptive, genotype-specific mechanism to Hg2+exposure in rice (Oryza sativa L.)
作者:Wang, Shufeng;Guo, Pan;Rennenberg, Heinz;Ma, Ming;Yao, Hesheng;Li, Lingyi;Du, Hongxia;Wang, Dingyong
关键词:Mercury; Accumulation; Tolerance; Antioxidant system; Differentially expressed genes (DEGs)